Yotam Smilansky, Rutgers Action Now Wandering Seminar Tel Aviv University, 2022 Based on joint work with Yaar Solomon

Plan of Talk

- · Substitution Schemes and Tilings
- Hyperbolic Tilings
- Statistics and Orbits

Substitution Tilings in Rd

A tiling is a collection of tiles with disjoint interiors that covers \mathbb{R}^d . A substitution rule on a set of prototiles is a tessellation of each prototile by rescaled prototiles, with a fixed scale $\in (0,1)$ Repeated applications of the substitution rule followed by a rescaling define larger and larger patches.

Multiscale Substitution Tilings in Ra [SS 21] A multiscale substitution scheme & in Rd consists of a substitution rule on unit volume prototiles T.,..., Tn, where various different scales appear and satisfy a simple incommensurabily condition. A time-dependent substitution semiflow Fz defines a family of patches: At time t=0 $F_t(T)=T$, and as t increases the patch is inflated by et and tiles of volume>1 are substituted.

Useful Example : x-Kakutani Schemes

Plan of Talk

- · Substitution Schemes and Tilings
- Hyperbolic Tilings
- Statistics and Orbits

From Schemes in R^d to Tilings of H^{d+1}

- upper half-space $H^{d+1} = \{(x,s): x = (x_1, \dots, x_d) \in \mathbb{R}^d, s > o\}$
- Two continuous actions by hyperbolic isometries: • horospheric \mathbb{R}^d -action $h_y(x,s) = (y+x,s)$ for $y \in \mathbb{R}^d$
- geodesic R-action $g_t(x,s) = (e^t x, e^t s)$ for teR

satisfying gtohy = hetyogt

Basic idea (Petite): give every Euclidean tile a height corresponding to its scale, and glue tiles together instead of substituting

Position the patch in H^{d+1}
 aligned to the horosphere {s=1}

Gluing Procedure

- Position the patch in Hd+1
 aligned to the horosphere {s=1}
- Glue an isometric copy of the patch
 to the bottom of a tile, repeat

Gluing Procedure

- Position the patch in H^{d+1}
 aligned to the horosphere {s=1}
- Glue an isometric copy of the patch to the bottom of a tile, repeat
 [after Dolbilin, Frettlöh '09]
- The limit object is called a tower (suspended normalized Kakutani partitions)

Poincaré disk model

Upper halfplane model

Related Hyperbolic Constructions

Poincaré disk model

Related Hyperbolic Constructions

Escher's Regular Division of The Plane VI '57

x=1/2

Plan of Talk

- · Substitution Schemes and Tilings
- Hyperbolic Tilings
- Statistics and Orbits

Counting in Towers

$$f(s=1)$$
Theorem let 6 be an incommen-
surable scheme in \mathbb{R}^{d} . Then:

$$\frac{f(s=e^{t})}{r^{T}H_{e}1} \stackrel{e^{dt}}{\to} e^{dt}, t \to \infty$$

$$f(s=e^{t}) inside a tower \qquad \sim \frac{[v^{T}(1)]_{j}}{v^{T}H_{e}1} \stackrel{e^{dt}}{\to} e^{dt}, t \to \infty$$

$$(Poths in G_{e} eq length < t)$$

$$\# \left\{ \begin{array}{c} tiles of type j above \\ f(s=e^{t}) inside a tower \end{array} \right\} \sim \frac{[v^{T}(S_{e} - V_{e})1]_{j}}{v^{T}H_{e}1} \stackrel{e^{dt}}{\to} e^{dt}, t \to \infty$$

$$(Volks in G_{e} eq length < t)$$

$$\# \left\{ \begin{array}{c} tiles of type j intersecting \\ f(s=e^{t}) inside a tower \end{array} \right\} \sim \frac{[v^{T}(S_{e} - V_{e})1]_{j}}{v^{T}H_{e}1} \stackrel{e^{dt}}{\to} e^{dt}, t \to \infty$$

$$(Volks in G_{e} eq length = t)$$

$$combinatories (S_{e})_{ij} = \sum_{u \in t_{pe}} f_{u} \qquad entropy \\ matrix \qquad (H_{e})_{ij} = \sum_{u \in t_{pe}} -Vol(T) \stackrel{l}{d} a vol(T)$$

$$volume \qquad (V_{o})_{ij} = \sum_{u \in t_{pe}} f_{o}(T_{e})$$

The Horospheric Flow horospheric R^d action: hy (x,s) = (y+x,s) for ye R^a Let 6 be an incommensurable scheme in R^d. Then Theorem The dynamical system $(X_{\sigma}^{hyp}, h_{y})$ is minimal, that is, every orbit is dense. **Theorem** Tilings in X_6^{hyp} have no horospheric periods, that is, if $Te X_6^{hyp}$ and $ye R^d$ satisfy $h_y(T) = T$ then y = 0. Indeed, then $g_t(T) = g_t(h_y(T)) = h_{ety}(g_t(T)) \in X_{\sigma}^{hyp}$ has period ety but is also arbitrarily close to a translation of T with period y, which is impossible.

The Greadesic Flow

geodesic IR-action: $g_t(x,s) = (e^t x, e^t s)$ for teIR Let 6 be an incommensurable scheme in IR^d. Then Theorem The dynamical system (X_{δ}^{hyp}, g_t) has dense orbits, periodic orbits (and orbits that are neither).

The tiles that intersect the s-axis define on infinite word in the tile alphabet: periodic words \implies periodic g_t orbits ulords that contain \implies dense g_t orbits every finite legal word

The Greadesic Flow

Theorem (Prime orbit theorem following [Rarry, Pollicott 83]) $\pi_{\sigma}(t) = * \{ \text{periodic orbits } \tau \text{ with minimal period } \lambda(t) \leq t \} \sim \frac{e^{dt}}{dt}, t \rightarrow \infty$

- The tiling zeta function $\zeta_{\delta}(s) := \prod (1 e^{-\lambda(r)s})^{-1}$
- $\zeta_{\epsilon}(s) = \frac{1}{\det(I M_{\epsilon}(s))}$, where $(M_{\sigma}(s))_{ij} = \sum_{\substack{\tau \text{ of } type \\ in T_{i}}} Jol(T)^{s}$ • $\frac{\zeta_{\epsilon}^{\prime}(s)}{\zeta_{\epsilon}(s)} = -\sum_{\substack{\tau \\ k=1}}^{\infty} \lambda(\tau) e^{-k\lambda(\tau)S} = -S \mathcal{L}\{S(t)\}(s), \text{ where } S(t) - \sum_{\substack{\tau \\ \tau > \tau}} \left\lfloor \frac{t}{\lambda(\tau)} \right\rfloor \lambda(\tau)$
- Laplace transform L{S(t)} has a simple pole at S=d with residue $\frac{1}{d}$
- Wiener-Ikehara: $S(t) \sim \frac{e^{dt}}{d}, t \rightarrow \infty$.
- $S(t) = \sum \left[\frac{t}{\lambda(\tau)} \right] \lambda(\tau) \leq t \sum 1 = t \pi_{\sigma}(t)$ (upper bound more technical) $\tau: \lambda(\tau) \leq t$ $\tau: \lambda(\tau) \leq t$

Thank You!

